Quadratic Diophantine Equations, the Class Number, and the Mass Formula

نویسندگان

  • GORO SHIMURA
  • Goro Shimura
چکیده

with a given q ∈ F×. In particular, in the classical case with F = Q and V = Q, we usually assume that φ is Z-valued on Z and q ∈ Z. The purpose of the present article is to present some new ideas on various arithmetical questions on such an equation. We start with some of our basic symbols and terminology. For a set X we denote by #X or #{X} the number (≤ ∞) of elements of X. For an associative ring R with identity element, we denote by R× the group of invertible elements of R and by Mn(R) the ring of all square matrices of size n with entries in R. We then put GLn(R) = Mn(R) and denote by 1n the identity element of Mn(R). For two square matrices A and B of size m and n we denote by diag[A, B] the square matrix of size m+ n with A and B in diagonal blocks and zeros in the remaining blocks. Now, given (V, φ) as above, we always assume that φ is nondegenerate. We also put n = dim(V ) and define, as usual, the orthogonal group O(V ) and the special orthogonal group SO(V ) by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Numbers of Quadratic Fields Determined by Solvability of Diophantine Equations

In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteri...

متن کامل

Integer-Valued Quadratic Forms and Quadratic Diophantine Equations

We investigate several topics on a quadratic form Φ over an algebraic number field including the following three: (A) an equation ξΦ · ξ = Ψ for another form Ψ of a smaller size; (B) classification of Φ over the ring of algebraic integers; (C) ternary forms. In (A) we show that the “class” of such a ξ determines a “class” in the orthogonal group of a form Θ such that Φ ≈ Ψ ⊕Θ. Such was done in ...

متن کامل

Diophantine Equations and Class Numbers

The goals of this paper are to provide: (I ) sufficient conditions, based on the solvability of certain diophantine equations, for the non-triviality of the dass numbers of certain real quadratic fields; (2) sufficient conditions for the divisibility of the class numbers of certain imaginary quadratic fields by a given integer; and (3) necessary and sufficient conditions for an algebraic intege...

متن کامل

A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems

A -system consists of quadratic Diophantine equations over nonnegative integer variables of the form:

متن کامل

Class Numbers of Real Quadratic Orders, Generalized Fermat Numbers, and Exponential Diophantine Equations

We examine criteria for the existence of cyclic subgroups of the class groups of arbitrary real quadratic orders via the solvability of certain exponential Diophantine equations. This extends numerous results in the literature including past work by this author over the past 25 years.

متن کامل

Pell ’ s Equation

An arbitrary quadratic diophantine equation with two unknowns can be reduced to a Pell-type equation. How can such equations be solved? Recall that the general solution of a linear diophantine equation is a linear function of some parameters. This does not happen with general quadratic diophantine equations. However, as we will see later, in the case of such equations with two unknowns there st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006